Computer Vision News - October 2021
2 Summary 1 Coding Workshop class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() Configurations: BACKBONE_SHAPES [[256 256] [128 128] [ 64 64] [ 32 32] [ 16 16]] BACKBONE_STRIDES [4, 8, 16, 32, 64] BATCH_SIZE 1 BBOX_STD_DEV [ 0.1 0.1 0.2 0.2] DETECTION_MAX_INSTANCES 100 DETECTION_MIN_CONFIDENCE 0.5 DETECTION_NMS_THRESHOLD 0.3 GPU_COUNT 1 IMAGES_PER_GPU 1 IMAGE_MAX_DIM 1024 IMAGE_MIN_DIM 800 IMAGE_PADDING True IMAGE_SHAPE [1024 1024 3] LEARNING_MOMENTUM 0.9 LEARNING_RATE 0.002 MASK_POOL_SIZE 14 MASK_SHAPE [28, 28] MAX_GT_INSTANCES 100 MEAN_PIXEL [ 123.7 116.8 103.9] MINI_MASK_SHAPE (56, 56) NAME coco NUM_CLASSES 81 POOL_SIZE 7 POST_NMS_ROIS_INFERENCE 1000 POST_NMS_ROIS_TRAINING 2000 ROI_POSITIVE_RATIO 0.33 RPN_ANCHOR_RATIOS [0.5, 1, 2] RPN_ANCHOR_SCALES (32, 64, 128, 256, 512) RPN_ANCHOR_STRIDE 2 RPN_BBOX_STD_DEV [ 0.1 0.1 0.2 0.2] RPN_TRAIN_ANCHORS_PER_IMAGE 256 STEPS_PER_EPOCH 1000
Made with FlippingBook
RkJQdWJsaXNoZXIy NTc3NzU=