Computer Vision News - November 2021
def batch_reg (filename_dir,transform_dir): # exclude missing cases N = 100 #number of cases for i in range( 1 , N ): if (i == 11 or i == 12 ): continue itemCT_filename = filename_dir + 'data/non_registered_cts/ ct'+str(i)+'.nii' itemMR_filename = filename_dir + 'data/non_registered_mrs/ mr'+str(i)+'.nii' itemSEG_filename = filename_dir + 'data/non_registered_segs/seg'+str(i)+'.nii' itemTransform_filename = filename_dir + \ '/case' + str(i) + '/Transform.h5' itemMR = slicer.util.loadVolume(itemMR_filename) itemSEG = slicer.util.loadVolume(itemSEG_filename) itemCT = slicer.util.loadVolume(itemCT_filename) itemTransform = slicer.util.loadTransform(itemTransform_filename) outputSEG_filename = filename_dir+'registered_segs/seg + str(i) + '.nii' SEGresampledNode = slicer.vtkSlicerVolumesLogic().CloneVolumeGeneric(slicer.mrmlS cene, itemSEG, 'out', True) SEGparameters = {'inputVolume': itemSEG, 'referenceVolume': itemMR, 'outputVolume':SEGresampledNode,'warpTransform': itemTransform, 'interpolationMode': 'NearestNeighbor'} slicer.cli.runSync(slicer.modules.brainsresample, None, SEGparameters) slicer.util.saveNode(SEGresampledNode, outputSEG_filename) outputCT_filename = filename _dir+'registered_cts/ct' + str(i) + '.nii' CTresampledNode = slicer.vtkSlicerVolumesLogic().CloneVolumeGeneric(slicer.mrmlS cene, itemCT, 'out', True) 3 Summary Su mary 04 12 16 42 48 50 56 62 Raquel Urtasun Exclusive Interview Jon Barron Honorable Mention Award ICCV Semi-supervised Learning at UCL My Summer Internship by Christina Bornberg Natasha Jaques Outstanding PhD Dissertation Award Python Scripting for 3D Slicer Medical Imaging Tool by Marica Muffoletto 3D Measurements in RAS Medical Imaging R&D Han Hu Best Paper Award ICCV 56 50 12 62 16 04 48 42 Anomaly Detection in Medical ... AI Research Paper By Ioannis Valasakis Computer Vision News Medical Imaging News Best of ICCV 2021 Best of ICCV 2021 BEST PhD Dissertation
Made with FlippingBook
RkJQdWJsaXNoZXIy NTc3NzU=